PROGRAMMING FOR PROBLEM SOLVING USING C RPL2B001

Course Outcomes

The student will learn

- To formulate simple algorithms for arithmetic and logical problems.
- To translate the algorithms to programs (in C language).
- To test and execute the programs and correct syntax and logical errors.
- To implement conditional branching, iteration and recursion.
- To decompose a problem into functions and synthesize a complete program using divide and conquer approach.
- To use arrays, pointers and structures to formulate algorithms and programs.
- To apply programming to solve matrix addition and multiplication problems and searching and sorting problems.
- To apply programming to solve simple numerical method problems, namely rot finding of function, differentiation of function and simple integration.

Contact hrs: 40 **Detailed contents**

Unit 1:

Introduction to Programming (4 lectures)

Introduction to components of a computer system (disks, memory, processor, where a program is stored and executed, operating system, compilers etc.) - (1 lecture).

Idea of Algorithm: steps to solve logical and numerical problems. Representation of Algorithm:

Flowchart/Pseudocode with examples. (1 lecture)

From algorithms to programs; source code, variables (with data types) variables and memory locations, Syntax and logical errors in compilation, object and executable code- (2 lectures)

Unit 2:

Arithmetic expressions, operators and precedence (2 lectures)

Conditional Branching and Loops (6 lectures)

Writing and evaluation of conditionals and consequent branching (3 lectures) Iteration and loops (3 lectures)

Arrays (6 lectures)

Arrays (1-D, 2-D), Character arrays and Strings

Unit 3:

Function (5 lectures)

Functions (including using built in libraries), Parameter passing in functions, call by value, Passing arrays to functions: idea of call by reference

Recursion (4 lectures) Recursion as a different way of solving problems. Example programs, such as Finding Factorial, Fibonacci series, Ackerman function etc. Quick sort or Merge sort.

Unit 4:

Pointers (2 lectures)

Idea of pointers, Defining pointers, Use of Pointers in self-referential structures, notion of linked list (no implementation). Dynamic memory allocation.

Structure (4 lectures)

Structures, Defining structures and Array of Structures, Structure vs Union.

File handling: ASCII and binary Files (1 lecture)

Unit 5:

Basic Algorithms (6 lectures)

Searching (Linear and Binary), Basic Sorting Algorithms (Bubble, Insertion, and Selection), Concepts of time and space complexity.

Assignments: All lab should be handled in UNIX/LINUX environment.

Minimum 3-5 problems should be implemented from Unit-2 to Unit-5 each..

Suggested Text Books

- (i) Reema Thareja, Introduction to C Programming, 2nd Edition, Oxford University Press.
- (ii) E. Balaguruswamy, Programming in ANSI C, Tata McGraw-Hill

Suggested Reference Books

- (i) Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice Hall of India
- (ii) Byron Gottfried, Schaum's Outline of Programming with C, McGraw-Hill
- (iii) Pradip Dev and Manas Ghosh, Programming in C, Oxford University Press.